
 © Semantic Designs, Inc. 1 2010/03

Automated C ode Ana lys is and
Trans formation tools

to S upport S c ientific C omputing

Ira Baxter
www.semanticdesigns.com

March, 2010

Y ou know the S c ienc e.
Do you know your Code?

http://www.semanticdesigns.com/

 © Semantic Designs, Inc. 2 2010/03

Typical Scientific Code
Development

• Choose physics modelling problem
• Determine equations
• Find approximate solvers
• Code/Revise FORTRAN
• Test FORTRAN
• Tune FORTRAN

} Iterate

 © Semantic Designs, Inc. 3 2010/03

Software Tools
for Scientific Computing

• Text Editor
• Fortran Compiler
• Debugger

• That's it?

 © Semantic Designs, Inc. 4 2010/03

What do we really want?
• A way to write a spec in a succinct notation
• Incremental conversion of spec into code
• Capture of rationale for each step
• Means to add implementation knowledge
• Means to revise spec and get revised code

These tools exist!
• Sinapse

• Financial differential equations → code www.scicomp.com
• DMS Software Reengineering Toolkit

• Arbitrary program transforms www.semanticdesigns.com

 © Semantic Designs, Inc. 5 2010/03

Stepwise Semiautomatic Conversion of Specs to Code

Transforms
aka “Rules”

Spec ProgTransform
Engineci

fS fGRqmts

Key Technology:
Transformation Systems

fS

(x-1)y
 +2y

t1

distributive
law

f1

(xy-1y)
 +2y

tk-1

like-term
combination

fk

xy+y

tk

factoring

fG

(x+1)y

t2

unity
multiplier

xy-
y+2y

fk-1

remove
parentheses

tk-2

...

 © Semantic Designs, Inc. 6 2010/03

Optimization transform
in DMS Rewrite Rule Language

Domain Name

(*Z)[a>>2] = (*Z)[a>>2]+1;
(*Z)[a>>2]++;

Domain Syntax

Rule Condition

Before:

After:

default base domain C;
rule use-auto-increment(v: lvalue):
 statement -> statement
 “\v = \v +1”
 rewrites to
 “\v++”
 if no_side_effects(v);

 © Semantic Designs, Inc. 7 2010/03

So what's hard about these tools?

• Defining notations (differential equations, FORTRAN)

• Notation parsers (MATLAB, C++ front ends)

• Computing inferences (symbol properties, information flows)

• Mappings (partial functions) from one notation to another

• Capturing sequence of transformations

• Replay of transformation sequences

Knowledge Capture

Limits what we can do now
• But enables many useful software engineering tasks

 © Semantic Designs, Inc. 8 2010/03

USAF B2 Bomber: Automated Legacy Migration

•Thousands of rules
•100% conversion
•Reused for F-16 migration

 © Semantic Designs, Inc. 9 2010/03

• Problem: aging 16-bit 1750 microprocessors in B2 Bomber
– 350,000 lines of mission software in JOVIAL
– Desperately need more memory space and speed

• Application functionality enhancements pushing boundaries
– No deep institutional knowledge about code details

• Solution: DMS + Semantic Designs’ services
– 12 months to implement JOVIAL translator

• Uses DMS source-to-source transformation rules
– 100% automated translation (some minor input edits)
– Passes ground simulator for B2
– Staging for installation in aircraft now

 Automated JOVIAL to C Migration

1M
Transformations

Spec

Transforms

 © Semantic Designs, Inc. 10 2010/03

default source domain Jovial;
default target domain C;
private rule refine_data_reference_dereference_NAME
 (n1:identifier@C,n2:identifier@C)
 :data_reference->expression
 = "\n1\:NAME @ \n2\:NAME" -> "\n2->\n1".
private rule refine_for_loop_letter_2
 (lc:identifier@C,f1:expression@C,
 f2:expression@C,s:statement@C)
 :statement->statement
 = "FOR \lc\:loop_control :
 \f1\:formula BY \f2\:formula; \s\:statement“
 ->
 "{ int \lc = (\f1);
 for(;;\lc += (\f2)) { \s } }“
 if is_letter_identifier(lc).

Refinement transforms
Jovial to C

Domain Name

So
ur

ce
 D

om
ain

 Sy
nta

x

Target Domain Syntax

Patt
ern

 V
ar

iab
les

 © Semantic Designs, Inc. 11 2010/03

DMS Software Reengineering Toolkit
• Metaprogramming machinery

– Source code analysis + modification
• Enables variety of automated SE tasks
• Commercial applications

– Formatters, Hyperlinked Source Browsers
– IP protection by code obfuscation
– Documentation extraction
– Metrics
– Preprocessor conditional simplification
– Test Coverage and Profiling tools
– Clone Detection and removal
– DSL code generation: Factory Automation
– Migrations (JOVIAL to C, C++ to C#)
– Large-scale C++ component restructuring
– SIMD vector generation from data-parallel C++ code

• Research applications
– Generic Aspect-weaving (U. Alabama Birmingham)
– Code generation/quality checking for spacecraft (NASA/JPL)
– Architecture Extraction (SD)

DMS toolkit

 © Semantic Designs, Inc. 12 2010/03

How DMS Works
Generalized Compiler Technology Specialized to Desired Task

Static Analysis

DMS

Source
Codes

Parse Analyze

Tool
Definition

Vulnerability
LocationsC++

Source Code

Vulnerability
Patterns

Dynamic Analysis

Migration

Transform Format Enhancement

Language
Definitions

Rule
Compiler

Vulnerability
Enforcement

Rules

C++
Source Code

C++ Code with
Runtime Checks

Ada, C++, SQL, Java, …

Refactoring
Rules

C++
Source Code

Rearchitected
Code

Translation
Rules

JOVIAL
Source Code

GNU C++
Source Code

 © Semantic Designs, Inc. 13 2010/03

Some (potential) applications
of DMS

for Scientific Computing
• Search Large Application Codes

• Static Analysis: Finding Duplicated Code

• Dynamic Analysis: Test Coverage

• Smart Differencing

• Minimizing re-testing

• Acquiring regression Tests

• SIMD Code Generation from C++

• Physical Units Checking

 © Semantic Designs, Inc. 14 2010/03

Searching Large Applications

• Some Scientific Codes are huge (1M SLOC, 1000 files)

• Programmers spend 50% of their time looking at code

• One problem: how to find anything?
• Solution: Code Search Engine

• Fast find across large code bases: C, C++, Fortran

• Instant display of hits and matching source code

 © Semantic Designs, Inc. 15 2010/03

Search: Where's the Subroutine?

 © Semantic Designs, Inc. 16 2010/03

Search: Where’s the COMMON block?

 © Semantic Designs, Inc. 17 2010/03

Static Code Quality Analysis:
Clone Detection

• Solution: Find copy/paste/edit duplicated code:
• Detect Exact and Near Miss hits

• “I fixed this code” (are there other copies?)
• 20% clones  20% chance there is other code to fix!

• What does it cost to miss a (cloned) fix?

• Stolen abstractions → should be library routines

• Inconsistent parameters → buggy clones

 © Semantic Designs, Inc. 18 2010/03

Clone Detection on Large Fortran Code

 © Semantic Designs, Inc. 19 2010/03

A copy/paste/edit Clone

 © Semantic Designs, Inc. 20 2010/03

The Clone Abstraction

 © Semantic Designs, Inc. 21 2010/03

Code sure to cause a bug
→ wastes Scientist's time

 © Semantic Designs, Inc. 22 2010/03

Dynamic Analysis:
Test Coverage for F90

• Have you done adequate testing?

• Passes “all my tests” isn't enough

• What about code not exercised?

• Solution: Track executed code
• Display in UI

• Produce reports on coverage

 © Semantic Designs, Inc. 23 2010/03

Test Coverage for F90 (Mockup)

 © Semantic Designs, Inc. 24 2010/03

Reviewing code changes

• Use (classic line-oriented) Diff(?)
– Advantages: widely available, easily understood
– Disadvantages:

• Line granuality: fine detail in statements hard to see
• Doesn’t understand code structure

– Programmers change constants, identifiers, expressions, statements,
block

• Use Smart Differencer(!)
– Advantages:

• Detects changes in code structures
• Reports changes as “rename”, copy, delete, move, …
• Finer grain output  focused reviewing
• Faster reviews

 © Semantic Designs, Inc. 25 2010/03

Diff vs. SmartDiff: misspelled Julian Dates
Diff output: 141 lines

! Conversions to and from Julienne dates and find day_of_the_week.
---> ! Conversions to and from Julian dates and find day_of_the_week.
19,20c19,20< ! julienne :: Integer, Optional
< ! If present the julienne day for which the weekday is
---> ! julian :: Integer, Optional
> ! If present the julian day for which the weekday is
31c31< ! -1=invalid Julienne day
---> ! -1=invalid Julian day
34c34< subroutine day_of_week(julienne, weekday, day, ierr)
---> subroutine day_of_week(julian, weekday, day, ierr)
37c37< integer,intent(in),optional :: julienne
---> integer,intent(in),optional :: julian
44,45c44,45< if(present(julienne)) then
< if(julienne < 0) then
---> if(present(julian)) then
> if(julian < 0) then
49c49< iweekday = mod(julienne+1, 7)
---> iweekday = mod(julian+1, 7)
51c51< iweekday = date_to_julienne(ierr=ierr)
---> iweekday = date_to_julian(ierr=ierr)
82c82< ! Convert a Julienne day to a day/month/year
---> ! Convert a Julian day to a day/month/year
85,86c85,86< ! julienne :: Integer
< ! The julienne day to convert
---> ! julian :: Integer
> ! The julian day to convert
100c100< ! -1=invalid Julienne day
---> ! -1=invalid Julian day
103c103< subroutine
julienne_to_date(julienne,day,month,year,values,ierr)

Another 100 lines…

Smartdiff output: 1 line
Rename 34.7-265.36 to 34.7-267.34 with
'date_to_julienne'->'date_to_julian',
'julienne_to_date'->'julian_to_date',
 and 'julienne'->'julian'

 © Semantic Designs, Inc. 26 2010/03

After change, what to Unit retest?
• Modules X directly called by Unit tests

– Sort of easy to detect with diff
• Fails badly on moved code
• Forces retest of modules with just renames

– Use SmartDiff
• Modules Y that call changed X

– Need global call graph
– Use C? Needs points-to analysis

• Modules Z called by changed Y
– after call to X … if Z uses result from X
– Need control flow and data flow analysis

 © Semantic Designs, Inc. 27 2010/03

Modified

A Global Call Graph

Change this…

2. M
ust Retest this

3. M
ust Retest this

 © Semantic Designs, Inc. 28 2010/03

Where to get Unit (Regression) Tests?

• Most development have very few (intentions don’t count!)
– Very hard to construct with large, running application

• Running code a possible source
– Instrument each function
– Collect argument/result values at runtime

• Must include all variables read by function
– Generate Unit tests for argument/result pairs
– Puppetize (modify) code to force enable Unit test execution

• Needs FORTRAN…
– Control/data flow analysis
– Transformation to insert instrumentation/puppet code

 © Semantic Designs, Inc. 29 2010/03

Compiling C++ for SMP/SIMD machines

• Problem
– Suddenly, SMPs with SIMD are cheap

• Variety of targets: PowerPC, Cell, X86, custom CPUs
– How to get high performance C++ applications running there?

• Solution: Vector C++
– New vector datatype V[i:j ; m:n ; x:y]

• Arbitrary dimension array of arbitrary subtype
• Breaks C++ storage layout rules → enables communication optimizations

– Data layout specifications
– Array slices and data parallel operation on (sub)arrays
– Partial order computations

• Where to get compiler?
– Use DMS + program transformations
– Translate VectorC++ to target-specific C++/SIMD operators

 © Semantic Designs, Inc. 30 2010/03

SIMD: Prototype VC++
• Robust VectorCpp.h (raw vector implementation as templates)

– Can enable “Out of range” errors on subscripts (via C++ asserts)
• Dynamic vectors now usable

– Initial sizing, access/update, parameter passing
• Simple casts between arrays and vectors
• RHS Vector Slicing; some LHS vector slicing
• Elementwise built-in operators on vectors: + - * / < > =
• Elementwise user-defined operations on vectors (a.k.a. lifted functions)
• Dot product {.} and Matrix Multiply {+@*} implemented
• forceinline works for non-lifted functions (but not for methods)
• Reduction of many VC++ operators to forall loops containing nested ifs

– Feeds into VMX vectorization with slices in inner forall loops
• Fusing of some forall loops (current implementation: not always safe)

– Fused loop bodies provide better vectorization opportunities

• Compiles to Vanilla C++
• Compiles to C++ with PowerPC VMX SIMD

 © Semantic Designs, Inc. 31 2010/03

Note p has been lifted
out of forall loop and
vectorized so that loop
can be implemented
with vector instructions

Note scalar
inside loop;
can’t vectorize
like this

SIMD: Example Translation to Vanilla C++

int main () {
 int x[3:7];
 int y[3:7];
 forall (int z=4:6)
 { int p;
 p= x[z]+1;
 x[z]=p*2;
 }
 forall (int z=4:6)
 y[z]=0;
}

VC++ C++ translation

Note two forall loops
fused, will enable
better vector machine
code generation

#include "VectorCpp.h"
int main()
 {
 VectorCpp::Vector<int, …<…, 3, 7> > x;
 VectorCpp::Vector<int, …<…, 3, 7> > y;
 {
 VectorCpp::Vector<int, …<…, 4, 6> > p;
 {
 for (int z = 4; z < 6; z++)
 {
 {
 p[z] = x[z] + 1;
 x[z] = p[z] * 2;
 }
 y[z] = 0;
 }
 }
 }
 }

 © Semantic Designs, Inc. 32 2010/03

int main () {
 int j=2; int m[0:10];
 float x[0:10],y[0:10];
 forall(int q=0:10)
 { x[q]=x[q]+.3f*y[j];
 if (y[q]!=3.f & x[q]>1.f)

 { if (m[q]==3)
 x[q]=0.0;
 }

 }
 }

const float L15[4] = {.3e0f,.3e0f,.3e0f,.3e0f};
#include "VectorCpp.h"
int main() {
 int j = 2; VectorCpp::Vector<int, …, 0, 10> > m;
 VectorCpp::…float…0, 10> > x; VectorCpp::…float…0, 10> > y;
 { int lt11 = 0; int ut12 = 10; // preloop: handle fractional vector
 for (int q=lt11; q<(lt11%4 …); q++)
 { x[q] = x[q] + .3f * y[j];
 if (y[q] != 3.f & x[q] > 1.)

if (m[q] == 3)
 x[q] = 0.0; }

 for (int q=lt11%4==0?lt11:lt11+4-lt11%4; q<ut12-ut12%4;
 q += 4)
 { __stvx(__vmaddfp(__lvx(&L15,0),
 __vspltw(__lvlx(&y[j],0),0),
 __lvx(&x[q],0)),&x[q],0);
 { _vector4 t13 = __vand(__vcmpequwR(
 __vcmpequw(__lvx(&y[q],0),__vcfux(__vspltisw(3),0)),
 __vspltisw(0), 1),
 __vcmpgtfpR(__lvx(&x[q],0),
 __vcfux(__vspltisw(1),0),1)));
 if (XMComparisonAnyTrue(1))

{ vector4 t14 = __vcmpequwR(__lvx(&m[q],0),
 __vspltisw(3), 1);
 t14 = __vcmpequwR(t13,__vand(t14, t13), 1);

 if (XMComparisonAnyTrue(1))
 __stvx(__vsel(__lvx(&x[q],0),
 __vspltisw(0),t14),&x[q],0);

}}}
 // postloop
 for (int q = ut12 - ut12 % 4; q < ut12; q++)

{ … } } }

Pre and post loops
handle fractional vectors

SIMD: Example Translation to SIMD Vectors
VC++ C++ translation (edited)

Note multiply-and-
accumulate optimizatons

Note conditional update
of x[q] based on nested
conditionals in loop

 © Semantic Designs, Inc. 33 2010/03

Physical Units Checking
Does your computation make sense?

• Problem: easy to get units wrong in formula
 SNOW_FEET = SNOW_MASS / 12.0

– Formula complexity, abbreviated names contribute
 SNOW_DEPTH = SNM / 12.0

• Solution: Automate Units Checking
– Annotate code with units

• No change in performance

– Tool checks for sensible usage

 © Semantic Designs, Inc. 34 2010/03

Physical Units Checking

REAL PRECIP_RATE ! u_gram/u_second
REAL DURATION ! u_hour
REAL SNOW_DEPTH ! u_inches
…

SNOW_MASS = PRECIP_RATE * DURATION *
 & (60*60 * u_second / u_hour)
…
SNOW_DEPTH = SNOW_MASS / (12.0 * u_inches/ u_foot)

Detected error

Programmer annotations

Implied units

Programmer annotations

 © Semantic Designs, Inc. 35 2010/03

Other Possible Tools
• Code Refactoring
• Code optimization for parallel machines
• Holy Grail: Differential equations → code

 © Semantic Designs, Inc. 36 2010/03

Conclusion

• Big codes are hard to build
• Many tools can improve development
• General mass analysis/change tools

 make it practical to get many tools
• DMS is one of these engines
• SD already has a number of useful tools

 © Semantic Designs, Inc. 37 2010/03

DMS Toolkit Components
• Parser/PrettyPrinter

– Multimode lexing and GLR parsing
– Automatic AST construction from

grammar
– Preprocessor parsing, comment retention

• Existing front ends
– C, C++, C#, Java, Pascal, Visual Basic
– COBOL, JCL, FORTRAN, Ada
– HTML, XML, CORBA IDL
– Verilog, VHDL

• Procedural API to ASTs
– Traditional compiler API

• Analysis support
– Parallel attribute evaluator over AST
– General symbol table manager
– Control flow graph construction
– Data flow analysis framework
– Points-to analysis framework

• RSL: Transformation Rule Language
• Patterns in DSL syntax
• Patterns, rewrites, rewrite rule sets

• Term rewriting engine
• Associative/Commutative rewrites
• Constant folding on basic types

• PARLANSE: DMS Procedural
 Programming Language

• Custom analyzers/transforms
• SMP Parallelism
• Robust exception handling

	Automated Code Analysis and Transformation tools to Support Scientific Computing
	Typical Scientific Code Development
	Software Tools for Scientific Computing
	What do we really want?
	Slide 5
	Optimization transform in DMS Rewrite Rule Language
	So what's hard about these tools?
	Slide 8
	Problem: aging 16-bit 1750 microprocessors in B2 Bomber 350,000 lines of mission software in JOVIAL Desperately need more memory space and speed Application functionality enhancements pushing boundaries No deep institutional knowledge about code details Solution: DMS + Semantic Designs’ services 12 months to implement JOVIAL translator Uses DMS source-to-source transformation rules 100% automated translation (some minor input edits) Passes ground simulator for B2 Staging for installation in aircraft now
	Refinement transforms Jovial to C
	DMS Software Reengineering Toolkit
	How DMS Works Generalized Compiler Technology Specialized to Desired Task
	Some (potential) applications of DMS for Scientific Computing
	Searching Large Applications
	Search: Where's the Subroutine?
	Search: Where’s the COMMON block?
	Static Code Quality Analysis: Clone Detection
	Clone Detection on Large Fortran Code
	A copy/paste/edit Clone
	The Clone Abstraction
	Code sure to cause a bug → wastes Scientist's time
	Dynamic Analysis: Test Coverage for F90
	Test Coverage for F90 (Mockup)
	Reviewing code changes
	Diff vs. SmartDiff: misspelled Julian Dates
	After change, what to Unit retest?
	A Global Call Graph
	Where to get Unit (Regression) Tests?
	Compiling C++ for SMP/SIMD machines
	SIMD: Prototype VC++
	SIMD: Example Translation to Vanilla C++
	SIMD: Example Translation to SIMD Vectors
	Physical Units Checking Does your computation make sense?
	Physical Units Checking
	Other Possible Tools
	Conclusion
	DMS Toolkit Components

